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Abstract—This real-time system recorded raw returns and 
processed continuous strip-map, high-resolution (< 1m), wide-
swath (37 km) imagery on-board the Convair 580 aircraft with 
an embedded high performance computing system costing 
under $100K. The SAR image formation algorithm was 
optimized at all levels of the computer architecture to achieve 
real-time processing over 9000 times faster than the original 
algorithm specification.    The information management system 
implemented a pub-sub-query environment to allow real-time 
offboard exploitation of the on-board multi-terabyte database 
within seconds.  Real-time SAR image formation was 
demonstrated on five flight tests.  The completed flights 
provided 7.3 terabytes of raw and processed imagery to 
support future algorithm research.   

I. INTRODUCTION 
The Swathbuckler experiment is an effort to develop and 

demonstrate wide-swath, high resolution, real-time strip map 
SAR image formation.  The program was conducted under 
the auspices of the signal/image processing panel of The 
Technical Cooperation Program (TTCP) which involves the 
defense research organizations of the US, UK, Canada, and 
Australia [1].  Following lab and aircraft integration 
activities, the Swathbuckler demonstration culminated in five 
flights in Ontario, Canada during the fall of 2005.  During 
the flights, the aircraft flew hexagons with 40 km sides with 
the radar looking inward, as shown in Fig. 1.  Each leg 
produced roughly a 40 km wide x 37 km deep imaged strip 
20 to 57 km from the aircraft which overlapped with the 
imaged areas of the other legs. While Swathbuckler covers 
many technical areas, the focus of this paper is the embedded 
high performance computing and information exploitation.  
Three other papers deal with the system architecture [2], 
processing front-end [3], and radar system [4]. 

Some of the most difficult challenges for this experiment 
involved meeting the real-time requirements for embedded 
signal/image processing and devising a means to exploit the 
data both on-board and offboard the aircraft. The SAR 
processing algorithm was provided by Defense Research and 
Development Canada - Ottawa.  It was implemented using 

the MATLAB® signal processing environment and could 
process 60k range lines of 16384 points into imagery using 
16k azimuth blocks in 12.5 hours time.  To run in real-time, 
processing had to be measured not in hours but tens of 
seconds. AFRL and ITT Industries, Advanced Engineering 
& Sciences Division, implemented the MATLAB® image 
formation algorithm in C++ and optimized it for the High 
Performance Computing (HPC) platform on 24 backend dual 
Xeon nodes.  AFRL also developed the information 
management system both for the embedded system and the 
data repository using the Joint Battlespace Infosphere (JBI) 
framework [5]—a grid-based pub-sub-query information 
management environment. 

II. OBJECTIVES 
Three objectives drove the design of the Swathbuckler 

processing system.  These objectives have an interlinked 
dependency on each other. 

Figure 1.  Ottawa, Ontario Hexagon Flight Pattern 
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A.  Real-time Stripmap SAR Processing 
Two attributes of this objective are affordable and real-

time. Affordability improves the ability to transition the 
technology by both decreasing cost and also complexity of 
the solution by aggressively leveraging commercial 
technology advances.  The objective was to demonstrate that 
well understood cluster computing technology costing less 
than $100K could do the job.  

The real-time aspect has significant implications on the 
computational design because the complex SAR processing 
had to be done within a time limit on-board a resource 
constrained aircraft.  For example, the power limit was 8 kW 
and the chassis had to fit in two shortened racks onboard the 
aircraft.  The goal here was to produce imagery across a 
swath width 40 km as fast as possible.  The goal PRF value 
of 800 translates into processing SAR imagery at 6 km2 /sec.  
However, since the PRF was slaved to aircraft velocity this 
was a primary control available to adjust the processing rate. 

B. Image Exploitation 
Once the imagery has been processed there is great value 

in having secure fast custom access to the imagery.  Thus the 
images had to be accessed easily and quickly both onboard 
and offboard the aircraft.  Remote users had to be made 
aware of newly created images and be able to query the 
imagery database onboard the aircraft by their custom-
defined parameters.  The goal was to support this 
exploitation with latency of seconds—not minutes. 

C. Real-time Data Recording 
Post-demonstration analysis and continued algorithm 

research motivated the storage of both the raw image returns 
and processed imagery.  The raw data supports post-
processing using new algorithm configurations.  Note that 
the recording of processed data to an onboard database is 
implied by the exploitation objective.  Both sets of data are 
real-time flows and must be captured to disk without falling 
behind.   

III. APPROACH 
To achieve real-time SAR image formation across a wide 

swath it was important to maximize the performance of the 
processing architecture.  The approach developed from 
estimation of processing potential, to distribution of the data, 
communication overhead, influence of aircraft and radar 
variables, process distribution, memory management, 
optimization, data storage and finally the exploitation 
approach. 

A. Comparing Peak to Required Performance 
Dual Xeon processors in 1U rack-mountable format are 

widely used in business as web servers, but for $2K-$3K 
also can provide considerable signal processing.  Each 3.2 
GHz Xeon processor features a peak performance of 12.8 
billion single precision FLoating-point OPerations per 

Second (FLOPS). Twenty four dual nodes have a peak of 
614 billion FLOPS (GFLOPS). 

Analysis determined the stressing parts of the algorithm 
to be the FFT and Inverse FFT operations for compression in 
the range and azimuth directions, motion compensation, 
Range Cell Migration Correction (RCMC) and auto 
focusing.  At 800 Hz PRF, these tasks amount to sustaining 
approximately 100 GFLOPS which is 26% of peak.   Based 
on FFT benchmarks, this seemed achievable. 

Another stressing condition was introduced by memory 
limitations from the corner turning operations and memory 
management of the required memory address space for each 
process—limited to around 3 GB on the 32 bit Xeon 
architectures.   However, by mapping shared memory blocks 
into the 3 GB process space, larger memory could be tapped, 
albeit as sequential overlays of process memory. 

The basic approach to processing the SAR imagery in 
parallel was to divide the swath width (40 km) into 24 
subswaths about 1.5 km each.  Each subswath holds 16384 
points in range, about 10000 of which are “new”, the rest are 
overlapped with the adjacent node to support overlap-save 
range compression.  Thus the node 1 would process the 
range closest to the aircraft and node 24 would process the 
range lines furthest from the aircraft.  

An important attribute of the processing is that the 
azimuth compression work gets harder at further ranges 
because the length of the azimuth filter increases and so the 
overlap regions (which are thrown away) increase.  This 
motivates going to larger azimuth FFTs at further ranges to 
make more headway in the presence of the overlap 
inefficiency.  In this case, 16K azimuth FFTs are used for the 
first 8 range subswaths and 32K FFTs are used for the 
remaining 16 subswaths as shown in Fig. 2.  

B. Radar Data Input 
Another key challenge to achieving a simple and 

affordable solution was converting raw A/D input data into 
packetized information objects with headers in a form 
communicable to the COTS dual Xeon processing nodes.  
These nodes featured dual Gigabit Ethernet links, so one was 
devoted to the real-time inputs while the other provided the 
normal cluster networking.  An FPGA at the A/D front-end 
solved this interfacing problem efficiently.  It converted the 
A/D data into separate UDP packets steered toward each of 
the 24 nodes, replicated the data for range overlaps, attached 
headers, and optionally also performed IF to baseband 
downconversion as discussed in [3]. 

C. Communication Overhead 
Using the overlap-save method to break the range 

compression across the wide swath into several subswaths 
introduces a communications overhead proportional to the 
range pulse compression ratio.  The replication of data could 
be accomplished either by the FPGA or by message passing 
amongst the cluster nodes.  In this case, the FPGA-side did 
the replicating using the high capacity of the gigabit 
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Ethernet, and this allowed the heavily tasked cluster nodes to 
be spared the extra work of inter-node communications.   

There is a data dependency inherent in the SAR 
algorithm--the range processing precedes the azimuth 
processing. Thus, the intermediate data structure needs to be 
passed between these processes.  Because this 
communication was kept local to each node, shared memory 
could be used instead of slower message passing protocols. 
Communications, via shared files, is however needed to get 
the current aircraft position/altitude for the motion 
compensation from the cluster headnode. 

Even with shared memory, the corner-turning between 
the two Xeons is expensive.  The large cube is turned once to 
perform the azimuth compression FFTs, but there was a 
problem with RCMC wishing to turn back to a range 
orientation and then return to azimuth orientation.  This was 
avoided by altering the RCMC algorithm to use cache lines 
in the azimuth direction and avoid re-turning the cube. 

D. Related Variables: Velocity and PRF 
Real-time SAR processing depends on a number of 

variables but one critical to the Swathbuckler processing 
design was the PRF.  Because the aircraft speed dictates the 
rate at which the returns are passed to the HPC, changing the 
aircraft velocity effectively changes the PRF.  As the aircraft 

speed increases, the PRF increases. So the PRF linearly 
throttles the data rate into the processing system and thereby 
the computations.  To stay aloft and level, the minimum PRF 
is roughly 400 PRF.  Thus, the desired minimum PRF was 
set at 500 and if the SAR processing lags, the system was 
designed to gracefully degrade by dropping blocks of images 
as buffers fill. 

E. Processing Distribution and Pipeline 
A logical division for a dual-processor node was to put 

the range processing functions on one of the processors and 
the azimuth processing on the other. The original algorithm 
sequentially processed all range lines first and then processed 
the azimuth lines. The implementation processes the first 16k 
(or 32k) range lines then starts the second CPU azimuth 
processing on that block in parallel while the first CPU 
continues onto the next block of range lines.  Once an image 
is finished, it is immediately written to disk.  Internal buffers 
ensure efficient flow between the input, range, azimuth, and 
writing portions. This represents a 4-stage pipeline.   

F. SAR Algorithm Optimization 
The original algorithm implemented in MATLAB® took 

12.5 hours to process 60000 range lines of one subswath into 
images.  For a 500 Hz PRF which was used in the flight 
tests, 500 range lines, each with 24 subswaths, are produced 

Figure 2.  Swathbuckler Processing Layout 
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each second.  This is a factor of 9022X speedup. So the 
original code, though being a functional prototype, was far 
from real-time. To start, the algorithm was re-targeted to a 24 
node Beowulf cluster. Over time, processor clocks increased 
from 2.55 GHz to 3.06 and 3.2 GHz. During the flights, eight 
3.06 GHz and sixteen 3.2 GHz dual-Xeon nodes comprised 
the cluster with an average of 6 gigabytes of shared memory 
per node.  

Using optimization tools, a series of advances were 
implemented to reduce the execution time.   

1) Corner Turn 
This is a very expensive operation because of the large 

memory latency.  These Xeon microprocessors have a 2 or 3 
level cache hierarchy which is critically important to 
achieving good performance.  The Level 2 (L2) cache sized 
at 512KB on the 3.06 GHz processors, and 1 MB on the 3.2 
GHz processors was especially important.  The corner turn 
function reads one line and then writes it back out-of-stride 
to a distant part of memory—essentially performing a matrix 
transpose operation.  Because the corner turn moves data 
outside the cache’s locality on a frequent basis, the 3+ GHz 
CPU clock is effectively slowed to the speed of the front side 
bus—566 MHz later increased to 800 MHz.  In addition, this 
already costly operation was repeated four times during the 
baseline image formation task. 

To work with the cache design, we changed it into a 
piece wise operation that took advantage of the cache lines 
which are the quanta of information moving through the 
memory hierarchy.  This greatly reduced time consuming 
cache-misses.  We reduced the number of corner turns 
required by rewriting the RCMC to run across cache lines.  
A final corner turn after image formation which wrote the 
image out unit-stride in range was also eliminated. In the 
end, the four corner turns were reduced to one. 

2) Auto Load Balancing 
Because of the pipeline architecture, if one CPU gets 

ahead, it can share the work that may be holding up the 
other. Typically, the azimuth processor was running 
behind range processing throughout the optimization 
effort. Therefore, the system allowed the first two steps 
of the azimuth processing to be dynamically taken over 
by the range processor. 

G. Data Storage 
The impact of storing the both the raw and processed 

data led to the need for increased disk capacity for the 
Coyote cluster.  Maintaining the independence of each 
data set allowed for quick reprocessing and data re-
distribution tasks. Each node was equipped with two 
separate 200 GB hard disks—one for processed imagery 
and the other for raw data.  A minor price for the 
continuous recording capability is that 7% of each 
CPU’s time is dedicated to this data recording activity.  
Using ultra mode 5 direct memory access and separate 
IDE controllers the impact would have been much 
worse.  Special attention had to be given to data capacity 

rating of the connection ribbon between the hard disk and the 
motherboard.  There were several occasions when the wrong 
type of connection ribbon doubled the transfer times. 

H. Exploitation 
Meeting the exploitation objective required an 

information management system that provided the desired 
characteristics—custom query, remote accessibility, security, 
and flexibility.  We were able to leverage a development of 
such a system called the Joint Battlespace Infosphere (JBI) 
that had been developed by AFRL and already shared under 
the Information Management panel of TTCP. 

The JBI uses a publish and subscribe communication 
method [5].  All communication between clients is defined in 
an XML schema. This allows clients to be loosely coupled 
which assists rapid prototyping and flexible systems. The 
Swathbuckler user console displayed JBI publications of 
cluster node status to track performance and health. This 
functionality proved invaluable during integration and flight 
testing. 

Metadata associated with image formation, including the 
locations of the image corners in lat/long, was published as 
each node finished an azimuth frame. All these publications 
were stored permanently. The rectangles described by image 
information publications were plotted on a live map display 
as shown in Fig. 3. As the aircraft flew in its hexagon 
pattern, the images show up on the map at the corresponding 
geo-registered location on the display. Each leg of the 
hexagon is portrayed in a different color. At the time of the 
photo in Fig. 3, four legs of the hexagon were complete. A 
latitude and longitude position could be selected with a 
mouse click which allowed the user to query the hexagonal 
data for any image containing that point.  With results 
returned from the query, the user could then request sub-
regions of the images for viewing.  These were excised from 

Figure 3.  Swathbuckler Moving Map Display On-board Flight 36 
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the larger images per user specifications input at the console. 

Security provided by the JBI implementation was crucial 
for connecting the remote user to the real-time system. The 
JBI uses virtual private networking with tunneling 
technology to allow communication connections over 
insecure networks. In the case of the Swathbuckler 
demonstration, a JBI client connected from the airplane over 
the internet to a JBI server at AFRL in Rome, NY allowing 
other users connected to the same server to communicate and 
receive information from the airplane with the same interface 
as onboard the aircraft, albeit with less bandwidth for 
download of imagery. 

IV. IMPLEMENTATION 
Designing a real-time HPC algorithm can be done in 

days—implementing it takes much longer with attention to 
understanding the often subtle interactions with the 
computing architecture.  This section details significant 
events of that process. First, the overlap calculations reveals 
the upper bound time limit for azimuth processing, then the 
optimization chronology, the integration and flight test 
challenges, and finally the challenges of integrating the JBI.  

A. Real-time Deadline and Overlap 
There is a hard time limit by which the SAR imagery 

must be finished on each node.  Since the azimuth overlap is 
thrown away, and this inefficiency grows with range, the 
time available for the node to complete a block (of 16K or 
32K range lines) is:  

  t  = (azimuth block — azimuth overlap) / PRF . (1) 

In general, as the processing range increases the overlap 
increases.  The further out in range the larger the overlap and 
thus the reduction in time till the next block must be 
processed.  For example, the first node has to finish its block 
in 45 seconds and the last node has to finish processing the 
same size block in 15 seconds.  At further ranges there is 
more overlap, thus less forward progress, for the same size 
block.  This is evident on Fig. 1 where the block sizes 
progressively decrease in size as range increases. 

For this demonstration, the real-time requirement for 
continuous processing of 16k azimuth block with PRF at 500 
results in a 15 second worst case on time between blocks. 
When 1 MB L2 cache became available, the inefficiency 
could be cut down by as much as a factor of 1.8 on the most 
critical nodes, by moving to 32k block sizes.  

B. Algorithm Optimization 
The azimuth processing was identified as the most time 

constrained portion by the Swathbuckler code and received 
the majority of the optimization effort. The first step ported 
the MATLAB® code to C++ and Vector Signal Image 
Processing Library++ (VSIPL++) [6] on a line-by-line and 
vector-for-vector basis. This allowed for very fine grain 

validation between the two codes. After initial validation, the 
code was instrumented by a timing algorithm to identify the 
slowest areas. The goal PRF of 800 necessitated that we 
reduce this run time down to 15 seconds for a 16k block. 

The following chronology shows a timeline improvement 
dates, the specific computing architecture technique applied, 
and the impact of the change (% reduction in execution 
time): 

• Aug 14, 2003 –Ported code was modified to run in 
memory. Disk input/output (IO) replaced with 
Random Access Memory (RAM) access. The 
MATLAB® implementation created intermediate 
data files, and the initial C++ implementation did 
also. Intermediate data structures used to support 
corner turning. (baseline) 

• Aug 21, 2003 – Code modified to allow for compiler 
optimization options. (44%) 

• Aug 27, 2003 – Various vector processing tweaks 
made. Moved VSIPL++ vector allocations out of 
loops. VSIPL++ is a package providing vector and 
matrix operations common in signal and image 
processing.   Modified the VSIPL++ implementation 
to allocate memory at 32 byte-aligned addresses.  
(11%) 

• Aug 28, 2003 – Added vendor optimized library 
functions underneath the VSIPL standard API to 
support azimuth compression. Improved FFTs by 
converting to the Spiral FFT 
<http://www.spiral.net/> [7].  (68%) 

• Aug 29, 2003 – Eliminated redundancy in main 
control loops, optimized azimuth compression 
multiply functions and eliminate an interpolation 
step. (48%) 

• Sept 2, 2003 – Added optimized cosine and sine 
calculations. (3%) 

• Sept 4, 2003 – Accelerated memory functions and 
various minor optimizations.  Eliminated 
unnecessary copying of FFT data. The original C++ 
implementation, based on the MATLAB® version, 
contained unneeded vector assignments. (13%) 

• Feb 01, 2004 – System run in pipelined state, more 
platform specific optimized vector operations added, 
and RCMC done out of stride removing two corner 
turns. Bypassed corner turns, where feasible. The 
corner turns between range and azimuth processing 
and before and after RCMC are not bypassed. 
Implemented load balancing between range and 
azimuth processing. Corner turning between range 
and azimuth processing is part of range processing. 
If the range processor is waiting for the azimuth 
processor, the range processor performs the first 
FFTs in azimuth processing. (52%) 
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• Feb 04, 2004 – Corner turn optimizations. The need 
for two corner turns removed by rewriting the 
RCMC function to run out-of-stride and optimized to 
use Intel caching architecture. This resulted in the 
function running faster out-of-stride than in-stride.  
(27%) 

• Feb 27, 2004 – RCMC replaced with assembly level 
Streaming SIMD1 Extensions (SSE) code, memory 
aligned on 128 byte boundaries, azimuth 
compression rewritten for speed, work around to 
improve speed of spiral FFTs, and the select lines 
algorithm within auto focus was optimized. 
Implemented FFTs and, for example, vector math for 
element-by-element multiplies with Intel 
Performance Primitives.  Begin expressing existing 
logic in terms of vector processing. (28%) 

• Mar 2, 2004 -   Rest of azimuth processing 
optimized by replacing the existing logic with vector 
operations—the auto focus portion being the most 
difficult. (31%) 

• Mar 10, 2004 – Spiral FFTs replaced with Intel FFTs 
because the 16K Spiral FFT exceeded the cache size 
and became variable and unpredictable. (12%) 

• Mar 12, 2004 – Memory movement optimized 
(14%) 

• Mar 25, 2004 – Various optimizations taken 
advantage of new processing nodes with 1MB L3 
cache (32%) 

• Apr 01, 2005 – System running on new nodes with 
1MB of L2 cache (40%). L2 much 
more effective than L3 cache. 

Fig. 4 summarizes the results of the 
optimization contributions listed above in 
terms of reducing the overall execution.  It 
highlights the most significant contributions 
to the final optimized azimuth processing of 
15 seconds.  

C. Integration 
This section begins with our optimized 

code fully exercised in the lab facility at the 
Canadian radar test site. Several challenges 
during integration required major algorithm 
modifications such as changing block sizes, 
implementing circular buffering, and creative 
use of the memory address space.  

1) 32k Block Upgrade  
During lab integration a change to the RF 

envelope moved the original start and stop 
swath locations 10 km further from the 
aircraft. The optimized algorithm met the 

                                                        
1 SIMD: Single instruction stream, multiple data streams 

real-time processing constraints based on a 40 km swath 
starting at 10 km and ending at 50 km with respect to the 
aircraft. The new range (20-60 km) led to more overlap thus 
reducing the time to the next block to a 12 second deadline.   

The implementation to that time would not keep up at 
500 PRF for the furthest ranges so the algorithm was 
changed to use 32k blocks for the furthest 16 nodes. 

Two memory management problems surfaced with the 
new block size.   

• Stage 3 (Azimuth processing) of the pipeline now 
required 3.9 gigabytes of addressable memory which 
does not leave room for critical operating system 
processes without causing thrashing. This is a hard 
limit of the 32-bit computing architecture.  Moving 
to a 64-bit architecture and having the available 
memory would solve it. Instead we did in-place 
processing of the images thus reducing the memory 
footprint back to a manageable 2.6 gigabytes. 

• Shared memory is the second area that needed a 
change to work with the 32k block size. The original 
shared memory implementation used an address 
mapping into shared memory to transfer data from 
stage 2 to stage 3 to stage 4.  In addition to stage 3’s 
memory address space, the total node’s memory 
cannot exceed the installed amount (6-8 GB). When 
moving to 32k block size the total needs to be 11 
gigabytes which exceeded resources. To overcome 
this, a circular buffer in shared memory was used to 
keep the active parts of stage 2, 3, and 4 in shared 
memory requiring a total of ~7 gigabytes.   

Figure 4.  Azimuth Processing Reduction Timeline 
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After regression testing the 32k block algorithm during 
aircraft integration, a problem with FPGA preprocessing and 
a desire to record IF rather than I,Q data led to a request to 
take on the downconversion processing. We were able to add 
that function to stage 1 of the pipeline.  

2) Heterogeneous Configuration 
To maintain the real-time processing, a mixture of block 

sizes and memory configurations was necessary across the 
embedded HPC.  Even after the 32k upgrade, the last 8 nodes 
in range could still not keep up with 500 PRF because the 
overlaps were still too great.  

Not yet mentioned was yet a different SAR parameter 
that affects processing performance. It is the presum value 
used in the algorithm.  Changing the azimuth presum by a 
factor of 2 effectively divides the block size in half.  This 
then increases the available processing time by sacrificing 
azimuth pixel size.  Thus, for the farthest 8 nodes, the 
presum value was increased to 4 so those nodes could keep 
up. This was acceptable because with the SAR grazing angle 
at 3.5 degrees, the quality of returns is already degraded at 
those distant ranges. 

Tab. 1 shows the final flight configuration of the HPC’s 
presum value, block size, clock rate, and memory for the 
three groups of ranges from the aircraft.  It was advantageous 
to put the slower nodes further out with a larger presum 
value because even the faster nodes with the larger block size 
still infrequently dropped blocks. 

TABLE I.  FLIGHT TEST  PROCESSING CONFIGURATION 

SAR Algorithm, Memory, CPU Detail 
Nodes 

Presum Block Size CPU Memory 

1-8 2 16k 3.2 GHz 4G 

9-16 2 32k 3.2 GHz 8G 

17-24 4 32k 3.06 GHz 6G 

D. Exploitation 
Establishing a working communications link proved to be 

the hardest implementation aspect of the exploitation. By 
contrast, linking the onboard and offboard JBI information 
management systems was straightforward.  Several flights 
went by without any usable downlink bandwidth until the 
radio antenna was placed on the belly of the aircraft.  With 
strategic placement of the ground antenna  at the hexagon 
center, a 100 kbits/second downlink bandwidth connection 
was established over the license-free radio through the use of 
a commercial LAN Bridge [8].  A remote user 300 miles 
away then connected over the internet to the distributed JBI 
with Kerberos authentication and received current SAR 
imagery as it occurred during a flight.  Through the course of 
the flight several connections were severed due to the flight 
path—however—the remote user was still able to continue 
his subscription. Due to the loosely coupled connection 
provided by JBI, the service hardly noticed drop outs.  

In addition to the exploitation done through the JBI 
during flight test, further real-time insight into current HPC 
processing was made available to the operators onboard the 
aircraft. On more than one occasion it was this tool that 
provided the clues to prevent losing recorded raw/processed 
data due to, for example, a malfunctioning Ethernet cable.  
Being able to see the processing utilization and remaining 
disk space saved flying what would otherwise be a bad 
collection leg. 

V. RESULTS  
Three objectives were pursued and accomplished during 

5 flights that occurred over Ottawa and Kingston, Ontario.  
Each flight was composed of a hexagon track around a 
center of interest so that each leg of the hexagon lasted about 
6 minutes. 

A. Real-time SAR Image Formation 
The SAR image formation task was implemented on the 

US HPC and flew on the Convair 580.  During those flights 
the sustained PRF hovered around 500.  The actual flight test 
swath width was 37km instead of 40km due to slightly more 
overlap in range allocated for motion compensation.  We 
processed SAR imagery across the entire swath width 
keeping up at 3.43 km2/s. 

B. SAR Image Exploitation 
During the last flight, remote ground personnel securely 

connected through the JBI to the on-board database as it was 
being populated by the real-time processing.  The user saw 
on his ground station within a second that a block of SAR 
imagery was ready for querying.  He then selected a position 
inside the desired block and queried for a 100x100 pixel area 
and received the corresponding imagery for the exact 
longitude/latitude rectangle only 14 seconds after the request. 
These returned images were smaller NITF files excised from 
the large image blocks stored onboard the aircraft. 

C. Real-time Data Recording 
We recorded a total of 7.3 terabytes of raw and processed 

imagery. This required 375 MB/sec of raw data being copied 
as well as 322 MB/sec of processed imagery being written to 
disk.  With such high data rates, each CPU on the node had 
7% utilization dedicated to writing disk data.  

VI. CONCLUSION 
Upon arriving at the goal of processing 37 km wide 

swath SAR returns into images in real-time, an important 
lesson learned is that initial performance on modern 
architectures is often far below the "conventional wisdom" of 
1-10% of peak derived from simply compiling code.  In fact, 
in this case the final performance represents approximately 
20% of peak.  Our "conventional wisdom" needs to be 
updated to reflect the heightened sensitivities of the new 
multilayer cache architectures. 
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The yearly advances of processing technologies, coupled 
with the ability to leverage commercial web server 
technologies, make it first achievable, and second affordable 
to benefit the real-time embedded radar signal processing 
community in many ways.  The Swathbuckler experiment 
shows that by careful matching of algorithm to architecture, 
the real-time production and exploitation of wide swath, high 
resolution SAR imagery is one such way. 
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